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Abstract - Automated recognition of traffic signs is 
becoming a very interesting area in computer vision 
with clear possibilities of its application in automotive 
industry. For example, it would be possible to design a 
system which could recognize the current speed limit 
on the road and notify the driver in an appropriate 
manner. In this paper we deal with methods for 
automated localization of certain traffic signs, and 
classification of those signs according to the official 
designations. We propose two different approaches of 
determining the current speed limit after the sign was 
localized. A demo software system was developed to 
demonstrate the presented methods. Finally, we 
compare results obtained from the developed software, 
and discuss the influence of different parameters on 
recognition performance and quality. 

I. INTRODUCTION 

Traffic sign detection and recognition has found its 
application in many driver assistance systems, which aim 
to display helpful information to the driver using 
knowledge about the current conditions on the road. A 
complete system should have three distinct functions: 

 
1. detection of a traffic sign in an image; 
2. classification of the detected sign; 
3. sign tracking through time. 
 
A complete traffic sign detection and recognition system 

should be able to recognize all of the traffic signs used in 
Croatia. Croatian regulations define five sign classes: 
warning signs, explicit order signs, information signs, 
direction signs and supplemental panels [10]. Due to the 
limited annotated image database of traffic signs, we 
focused our efforts on detecting and classifying only a 
subset of explicit order signs. After a detailed analysis of 
image and video databases at our disposal, we determined 
that the five most common traffic signs in this category are 
those shown in Fig. 1. 

 

 
 

Fig. 1. Five common signs in category of explicit order traffic 
signs 

Since all of the signs from Fig. 1. are similar in 
appearance (red circles containing black or red symbols), 
our detection algorithm is trained to detect only circular 
traffic signs, while an additional classification stage is 
needed to separate these signs from each other. 

Additionally, there is one traffic sign of specific 
importance: the speed limit sign (rightmost on Fig. 1). The 
system should also be able to determine the exact speed 
limit, if the corresponding sign is classified as such. 

This work is organized as follows. In Section 2 we 
mention different approaches by various researchers. In 
Section 3 we briefly describe an algorithm used to detect 
sign in an image. In Section 4 we present two algorithms 
used to recognize the detected sign. Section 5 contains 
details about how to combine results from individual 
frames to achieve detection and tracking in a video. 
Results are illustrated and discussed in Section 6. We 
conclude this article in Section 7. 

 
II. RELATED WORK 

 
The approaches to sign detection vary in use of color and 

geometric information. Various color-based approaches 
use RGB or other color models (i.e. HSV, L*a*b, 
CIECAM97, etc.). Intensity decoupling color schemes 
[1,5] are preferred because of diverse lightning conditions 
usually encountered in real life applications. Some authors 
use simple thresholding [1,2], while other use clustering 
methods [3] or recursive region splitting [4,5,6].  

Geometric information can be extracted with Hough 
transform [6,7,15], histogram of orientation vectors [5,13] 
or template matching [16].  Standard classifiers like SVM 
can be used with these geometric features [13]. A large 
body of work is based on the Viola-Jones detector 
proposed in [8]. This approach has been used in 
[9,10,11,12]. Most Viola-Jones based implementations 
extract shape information in grayscale images, while [9] 
uses color based Haar features. Neural networks are used 
for detection in [14].  

Unlike some of the related work, which considers static 
images [5,6,7], our system works on video sequences in 
real time (over 20 fps) on a mainstream CPU (~2GHz). 

III. SIGN DETECTION 

Detecting an object in an image is a computer vision 
problem for which a wide variety of algorithms exist.   
Because we wanted our system to work in real-time, we 
have decided to employ the Viola-Jones detection 
algorithm.  

 



A. Viola-Jones algorithm in traffic signs detection 

The Viola-Jones detector works by sliding a detection 
window across an image. At each position, the classifier 
makes the decision if there is a desired object inside the 
window. In the vast majority of window’s positions, the 
object is not found. The number of classifications for an 
image is equal to the number of windows positions, which 
can be in the order of 105 or 106. This is why the 
classification itself has to be as fast as possible. 

Viola-Jones algorithm is based on a cascade of boosted 
Haar’s features. More on the Haar’s features can be found 
in the original paper [8]. Boosting is done through 
AdaBoost, a machine learning algorithm which combines 
weak classifiers built on Haar’s features into a strong 
classifier. Given enough different weak classifiers, 
AdaBoost will produce a strong classifier with arbitrary 
precision. A theoretic proof and a good introduction to 
boosting can be found in a tutorial from AdaBoost’s 
creators, Freund and Schapire [17]. The decision of 
whether the object is detected is made through voting of 
weak classifiers, each according to its weights. Cascading 
classifiers speeds up this process significantly, because 
more important weak classifiers get to vote first: if their 
decision is negative, the image is rejected and other less 
important classifiers do not vote at all. Object is classified 
positively only if it successfully passes through the 
cascade, positively classified in each stage. Final classifier 
works in real time because: 

• Haar’s features take constant time to calculate 
from integral image; 

• in a classifier produced by AdaBoost, voting is 
done as a summation of weighted classifiers;  

• on average, only a small subset of classifiers votes 
every time because of the cascading.  
 

An analysis of the variants in the training process can be 
found in a paper by Lienhart, Kuranov and Pisarevsky 
[18]. 

 
B. Viola-Jones training 

To train the classifier, we used 757 images of traffic 
signs. Each positive image contained only a cropped traffic 
sign normalized to the size of 24x24. 3000 images were 
used as negatives. We trained the cascade with OpenCV, 
which is an open source library of computer vision 
functions. We used it with the following parameters: 

 
• Minimum hit rate of 0.995 per stage. Only one in 

200 positive images is falsely rejected in every 
stage, the others are positively classified. 

• Maximum false positives of 0.4 per stage. This 
allows that up to 40% of the images positively 
classified are false positives.  

• Number of stages was set to 20.  
 

 With these parameters the theoretic hit rate is expected 
to be more than 0.99520 ≈ 0,9 with outmost 0.420 ≈ 10-8 
false positives. 

Training of Viola-Jones detector took approximately 16 
hours on a 4 CPU computer, with OpenMP enabled. The 
training procedure stopped after reaching the desired 
number of stages. 

The trained cascade was afterwards tested with a test set 
of 286 images. Images from the test set were taken with a 
different camera and under various lightning conditions. 
Results are shown in Table 1. The number of false 
positives is expressed related to the number of signs in the 
test set.   

 
TABLE I 

Experimental results for trained Viola-Jones detector 
 

Scale 
factor 

Hits Misses False 
positives 

1.3 61.53% 38.46% 11.88% 
1.2 67.13% 32.86% 18.88% 
1.1 75.17% 24.83% 28.67% 

 

Viola-Jones detector works by sliding a detection 
window across an image, and enlarging that window by a 
scale factor after the end of the image is found. Therefore, 
modifying the scale factor affects the detection quality and 
speed. By reducing its size, we increase the possibility a 
sign will be detected, but we also increase the time needed 
for the algorithm to finish. In our work we used the scale 
factor of 1.1 because it provided the best hit ratio with an 
acceptable frame rate (over 20 fps). False positives are 
expected to be removed by later stages of sign recognition. 

Further analysis of the results revealed that most 
unsuccessful detections are caused by signs which are 
smaller than the samples used to train the cascade (24x24 
pixels). This behavior is not unexpected; its impact 
diminishes when the algorithm is used on a video sequence 
because traffic signs grow in virtual size as the sequence 
progresses. In a certain moment, it will become large 
enough to be detected. 

IV. SIGN RECOGNITION 

After a sign was successfully detected in an image, the 
classification process begins, as to determine the type of 
the sign. The classifier expects an adequate input vector, 
which must firstly be prepared by means of image 
preprocessing. 
 

A. Sign preprocessing 

The resulting sign from the detection stage can have 
arbitrary size. In order to correctly classify the sign, a size 
normalization is required. In our work, we used a standard 
sign size of 10x10 pixels. Image resizing procedure is 
implemented using bilinear interpolation algorithm. A 
clipping operation is also required, in such a manner that 
only the central part of the sign remains, which holds 
useful information. Fig. 2 shows results from two different 
interpolation algorithms. 

 



 
 

Fig. 2. (a) nearest neighbor interpolation, (b) bilinear filtering 

After size normalization, color information is discarded. 
Conversion from 24-bit RGB space to grayscale image is 
conducted by ITU CCR 601 standard. The resulting 
grayscale image has to be transformed into a binary image 
(image with pixel intensities 0 and 1) using a thresholding 
algorithm. All pixels with intensities over a defined 
threshold are assigned with value 1, and the remaining 
pixels become 0. An iterative threshold selection method 
[22] is used. This method produces very good results when 
used on images where objects of interest are evenly 
illuminated (which is the case with most traffic signs). In 
the case of non-uniform illumination, it is advisable to use 
one of the adaptive thresholding methods [23]. 

As a result of the segmentation procedure we get a 
binary image with dimensions of 10*10 pixels. Input 
vector for the classifier is formed by taking the binary 
image as a one-dimensional vector with 100 elements, with 
one slight modification. This modification replaces values 
of 0 with values of -1, to improve the neural network 
performance by distributing values equally around zero. 
 

B. Classification using neural networks 

There are many types of neural networks (e.g. feed-
forward networks, radial-basis networks, recursive 
networks) and possible applications for them (e.g. pattern 
recognition, function interpolation). It has been shown that 
multilayer perceptron networks with a single hidden layer 
and a nonlinear activation function are universal classifiers 
[19, 20]. Therefore, in our work we have chosen a 
multilayer perceptron (MLP) with back propagation (BP) 
training for classification. 

For the purposes of this project we have developed our 
own software library for MLP trained according to BP 
algorithm. The library provides support for creating and 
training arbitrary MLP (arbitrary number of hidden layers 
with arbitrary number of units in each layer) with the 
sigmoidal activation function. Using the capabilities of the 
developed MLP library we have created and trained two 
different multilayer perceptrons.  

- The purpose of the first network was to classify a 
given traffic sign (input vector) into one of five 
categories (as shown in Fig. 1).  

- The task of the second MLP was to recognize the 
actual speed limit if the first network classified the 
input vector into speed limit category. Hence, the 
second network was trained to recognize decimal 
digits (0-9).  

In the case of MLP there are always several network 
parameters left to be determined experimentally (the 
number of units in hidden layers, learning factor for weight 

correction, etc.) [21]. To determine the optimal parameters, 
we trained the MLP observing the performance on the 
validation set to avoid overfitting. 

Table II shows optimal parameters for both multilayer 
perceptrons (the values for number of units in hidden 
layer, learning factor for weight correction, maximal 
number of epochs and satisfactory average epoch error 
were obtained empirically). 

 
TABLE II 

Neuron numbers per layer 
 

 Input layer Hidden layer Output 
layer 

General 
MLP 

100 (10x10 
pixels) 10 5 

Speed limit 
MLP 

72 
(6x12 

pixels) 
10 10 

 
 

TABLE III 
Weight correction learning factors, maximum number of 

epochs and average errors 
 

 
 

Learning 
factor (ŋ) 

Maximum 
number of 

epochs 

Satisfactory 
average epoch 

error 
General 

MLP 
0.1 

initially, 
0.05 when 

error drops 
below 0.1 

 
10 000 

 
0.01 

Speed  limit 
MLP 

0.01 
initially, 
0.005 when 

error drops 
below 0.1 

 
50 000 

 
0.001 

 
Input training samples for the first network were 10x10 

pixels images of traffic signs obtained by localization 
process on initial images. Input samples for speed limit 
MLP were 6x12 pixels clear images of decimal digits, and 
their copies with random noise added on the pattern. Noise 
was created by flipping 10% of the bits in the original 
binary image.  

 
C. Determining the speed limit 

In order to analyze the numbers in the speed limit sign, a 
segmentation algorithm must be employed to correctly 
separate the digits. A straightforward algorithm searches 
for maxima in the vertical projection of the input image.  

 

 
 

Fig. 3. Input image (top) and the corresponding vertical 
projection (bottom) 



It is possible that some artifacts or noise will remain in 
the obtained digit after the segmentation is complete. To 
minimize such interferences, we extract the primary 
connected component (Fig. 4) 

 

 
 

Fig. 4. Example of a binary image and the corresponding 
connected components 

The extracted digit is then normalized to a size of 6x12 
pixels and transformed into the input vector for the digit 
classifier. 

Along a classification by neural network, we developed 
another method of digit-based classification based on 
structural analysis.  

Structural analysis deals with more complex structures 
than pixels or edges. For example, it considers loops, line 
ends and junctions. In order to extract this high-level 
information from a binary image, we must obtain the 
skeleton of the digit by thinning the object. The procedure 
of skeletonization is actually a reduction of an object to a 
graph, and it is mathematically defined with a medial axis 
transform. Fig. 5. shows an example of skeletonization. 

 

 
 

Fig. 5. Original digit (left) and its skeleton (right) 

After the skeleton has been obtained, we can extract 
structural features from it. We consider line ends, junctions 
and loops, as shown in Fig. 6. 

 
 

 
 

Fig. 6. Line ends (a), junctions (b),(c) and loops (d),(e) 

Line end is defined simply as a black pixel with only one 
black neighbor pixel. Junctions can be found by counting 
the number of white-black transitions in the 8-pixel 
neighborhood of the observed pixel. For determining the 
number of loops, we can invert the image and search for 
connected components. In the end we subtract 1 from total 
number of components, because it represents the 
background. 

Each digit can be described with the number of distinct 
features and their relative positions in the image. For 
example, “0” is the only digit with one loop and zero line 
ends. Digits “1” and “2” have the same number of features 
(two line ends and zero junctions and loops), but their 

relative and absolute positions differ. We can use this 
information to directly distinguish the digits. 

V. SIGN TRACKING 

In a video sequence, a sign will typically appear through 
multiple consecutive frames. Due to the imperfectness of 
the detection procedure, the sign might not be detected in 
every frame. Additionally, there is a possibility that false 
positives will appear. In order to efficiently track only the 
sign that is actually in the video, the system would have to 
remember information from previous frames and use it to 
correct the detection in the current frame. 

We propose a system which uses an auto-degrading 
reinforcement principle. It is based on two premises: 

 
1. Auto-degradation: The system should have a 

short-term memory which only remembers 
information in the certain amount of newest 
frames. The system „forgets“ older information. 

2. Reinforcement: The system should be updated if 
an object is detected in the current frame. 
 

The auto-degradation ensures that the information in the 
nearer past will have more impact than the older 
information.  

Such system can be implemented as a cluster of 
accumulators. Each accumulator represents a certain object 
that can be tracked. The value stored in the accumulator is 
proportional to the number of detections of the respective 
object. When an object is detected, the respective 
accumulator's value is increased by a certain amount. 
Objects not detected have their accumulators' values 
decreased. If a value in one or more of the accumulators 
becomes greater than the defined threshold, the object is 
considered to be tracked. If the tracked object leaves the 
field of view, the respective accumulator's value will be 
decreased through time. When it falls under the threshold, 
the object ceases to be tracked. 

VI. SOFTWARE SYSTEM AND RESULTS 

In our work, we developed a software system that 
implements all of the described algorithms. The system 
consists of two front-end applications with equivalent 
program core. The first application can be used to detect 
and recognize traffic signs in a stationary image, with an 
easy-to-use graphical user interface (Fig. 7) 

The second application uses a video file as its input and 
can be used to detect traffic signs in the video in real-time. 
The video application uses the same program core as the 
static image application, with the addition of an object 
tracking subsystem.  

The developed system was tested using a test set of 146 
static images (for the first application) and a video 
sequence in duration of 98 minutes incorporating 128 
traffic signs. The results are shown in Table IV. The 
system has a 73% hit ratio. 15% of all errors are caused by 



misdetections, while the other 13% are errors in 
classification 

 

 
 

Fig. 7. Graphical user interface for detection of signs in static 
images 

 

 
 
Fig. 8. Video application with a recognized speed limit traffic 

sign 

TABLE IV 
Static image application experimental results 

 
 Number Percentage 

Total number of signs 146 100% 

Correctly recognized 106 72.6% 

Detection errors 22 15.1% 

Classification errors 10 13% 

 
Results obtained from the video application are shown in 

Table V. The noted performance excels the performance of 
the static image application. Since the only difference 
between the two applications is the addition of the object 
tracking algorithm, we conclude that the improved 
performance is the result of the increased amount of 
processed frames. For example, misdetection in a frame 
can be rectified by a correct detection in one of the 
following frames.  

The application was tested on a dual core Athlon 
processor  (X2 5600+) with an average speed of 21 frames 
per second and a dual core Intel processor (2,2 GHz) with 
an average speed of 30 frames per second. The improved 
performance on Intel processors is caused by the fact that 
the OpenCV library uses optimized instructions on Intel 

platforms, and even makes use of the Intel Performance 
Primitives (IPP) if they are present. 

 
 

TABLE V 
Video application experimental results 

 
 Number Percentage 

Total number of signs 128 100% 

Correctly recognized 106 82.8% 

Detection errors 13 10.16% 

Sign classification errors 7 4.6% 

Speed limit errors 2 1.56% 

False positives 20  

VII. CONCLUSION AND FUTURE WORK 

We developed a system that recognizes traffic signs 
with real-time application as the main goal. With this goal 
in mind we used the Viola-Jones detection algorithm and 
neural networks for classification. The results obtained 
from the developed software show that our system is 
applicable for real-time video processing. Furthermore, we 
conclude that the system has better results when used on a 
video sequence, compared to the standard approach of 
traffic sign detection in static images. Relatively low error 
rates in classification stage indicate that the multilayer 
perceptron can be successfully used as a classifier of 
traffic signs and digits. 
Further improvements of the system should include a 
larger number of supported traffic sign classes. Currently, 
the main holdback is relatively low number of training 
samples for less frequent traffic signs. In addition, some 
problems could arise when training the neural network 
with a larger number of classes due to the increased 
dimensionality of the search space. There is also a problem 
of similarity between some traffic sign classes. 

Other improvements would include recognition of signs 
of different shape (triangular, for example), using more 
advanced methods of feature extraction such as principal 
component analysis, and increasing the code portability by 
implementing the functions from external program 
libraries, which could prove useful when implementing the 
system on different platforms or embedded systems. 
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